

Jaewan Chun*
KAIST
jwpalace@kaist.ac.kr

Seokbum Yoon*
KAIST
jing9044@kaist.ac.kr

Minyoung Choe
KAIST
minyoung.choe@kaist.ac.kr

Geon Lee
KAIST
geonlee0325@kaist.ac.kr

Kijung Shin
KAIST
kijungs@kaist.ac.kr

Best Paper Award

Summary

Motivation

- Real-world group interactions are naturally modeled as a hypergraph.
- Node attributes may influence hyperedge formation (e.g. homophily).
- However, most hypergraph generators overlook node attributes.

Proposed Algorithm: NoAH

- We propose **NoAH**, a node-attribute-based hypergraph generative model that reproduces the *interplay between structure and attributes* observed in real-world hypergraphs.
- NoAHFit** tunes its parameters to generate hypergraphs resembling a target hypergraph.

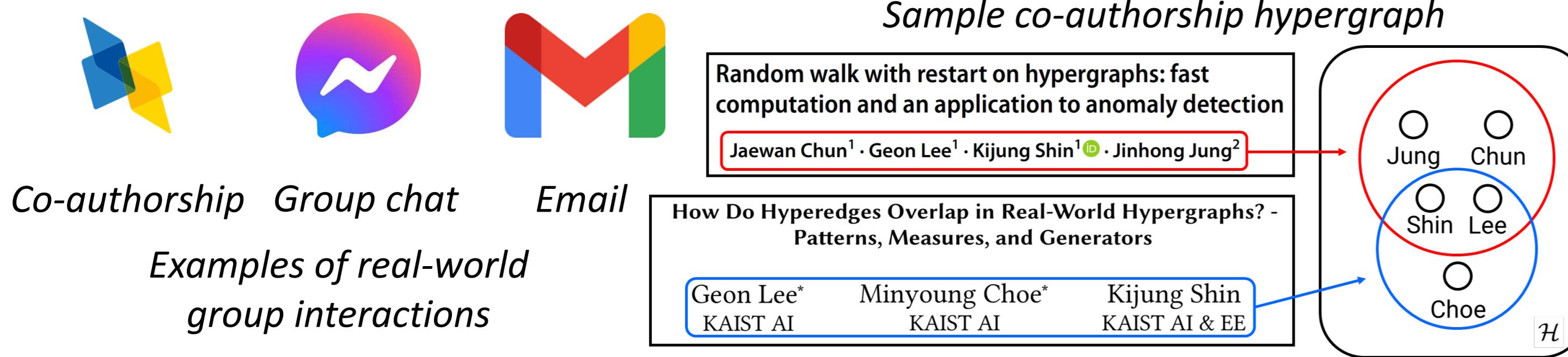
Extensive Experiments:

- Effective:** NoAH outperforms existing generators in modeling structure-attribute interplay.
- Scalable:** NoAH and NoAHFit are scalable with the numbers of hyperedges and attributes.

Introduction

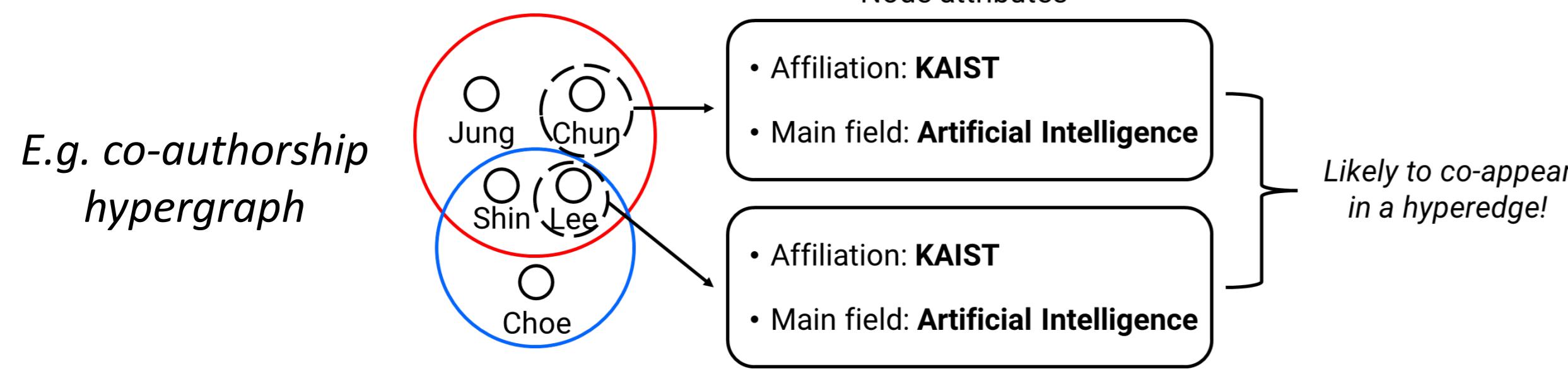
Hypergraph

- Hypergraphs model group interactions among individuals or objects.



Node Attributes and Hyperedge Formation

- Node attributes can influence hyperedge formation (e.g., homophily).



Hypergraph Generative Models

- Hypergraph generative models aim to generate realistic hypergraphs with systematic hyperedge formation mechanisms.
- Enables understanding of underlying mechanism of hyperedge formation.
- Applications: community detection, hyperedge prediction, and pattern discovery.
- Most of them **overlook node attributes**, having attribute-independent mechanisms.

Proposed Hypergraph Generator: NoAH

Overview of NoAH

- We propose **NoAH**: Node Attribute based Hypergraph Generator.
- NoAH aims to capture the **structure-attribute interplay** observed in real-world hypergraphs.
- NoAH is built upon three key ideas below.

Idea 1: Node Attribute based Probability Design

- NoAH models hyperedge formation probability based on node attributes.
- Specifically, edge formation probability is computed as the product of **affinity matrices**, where each entry represents the contribution of an attribute value pair.
- By Idea 1, NoAH takes into account the **interplay between structure and attributes**.

Node u : Attribute vector of u Node v : Attribute vector of v

$$P(u, v) = \prod_{i=1}^k \theta_i \left[\mathbf{x}_u^{(i)}, \mathbf{x}_v^{(i)} \right]$$

Connection probability (Eq. (1)):

$$P(u, v) = \prod_{i=1}^k \theta_i \left[\mathbf{x}_u^{(i)}, \mathbf{x}_v^{(i)} \right]$$

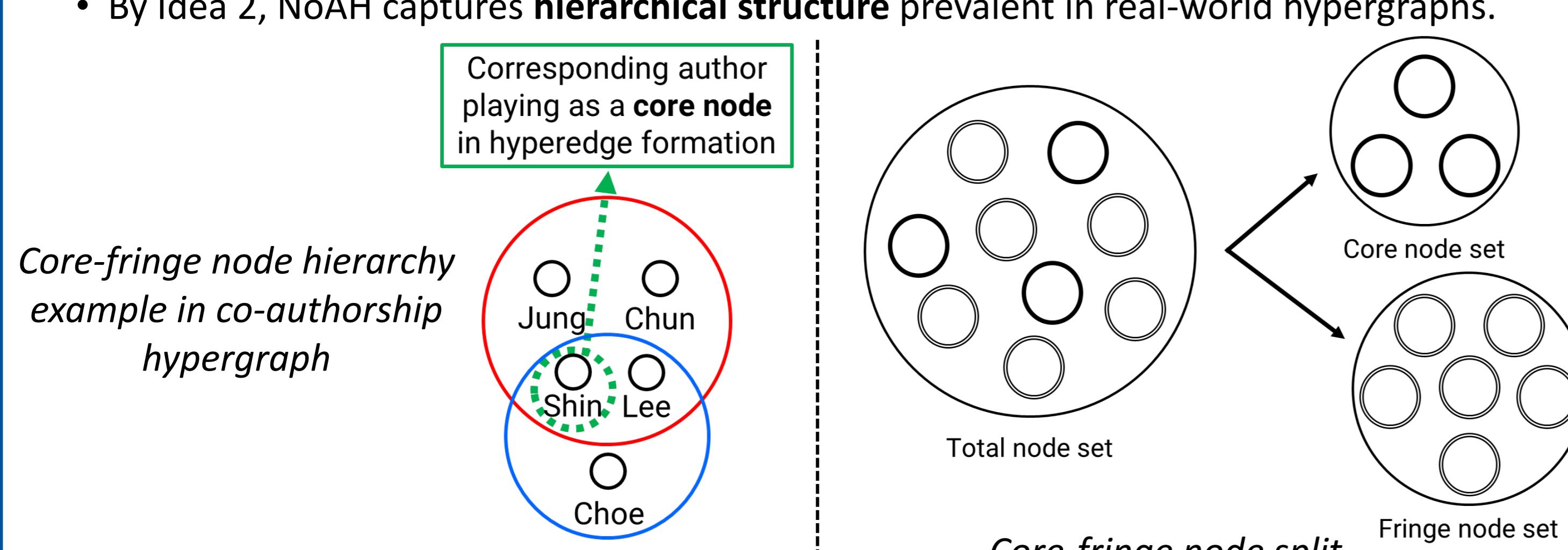
Multiplicative probability calculation

• k : the dimension of node attributes

• $\mathbf{x}_u^{(i)}$: attribute vector of node u

Idea 2: Core-fringe Node Hierarchy

- NoAH splits nodes into core (i.e. central) and fringe (i.e. peripheral) nodes.
- By Idea 2, NoAH captures **hierarchical structure** prevalent in real-world hypergraphs.



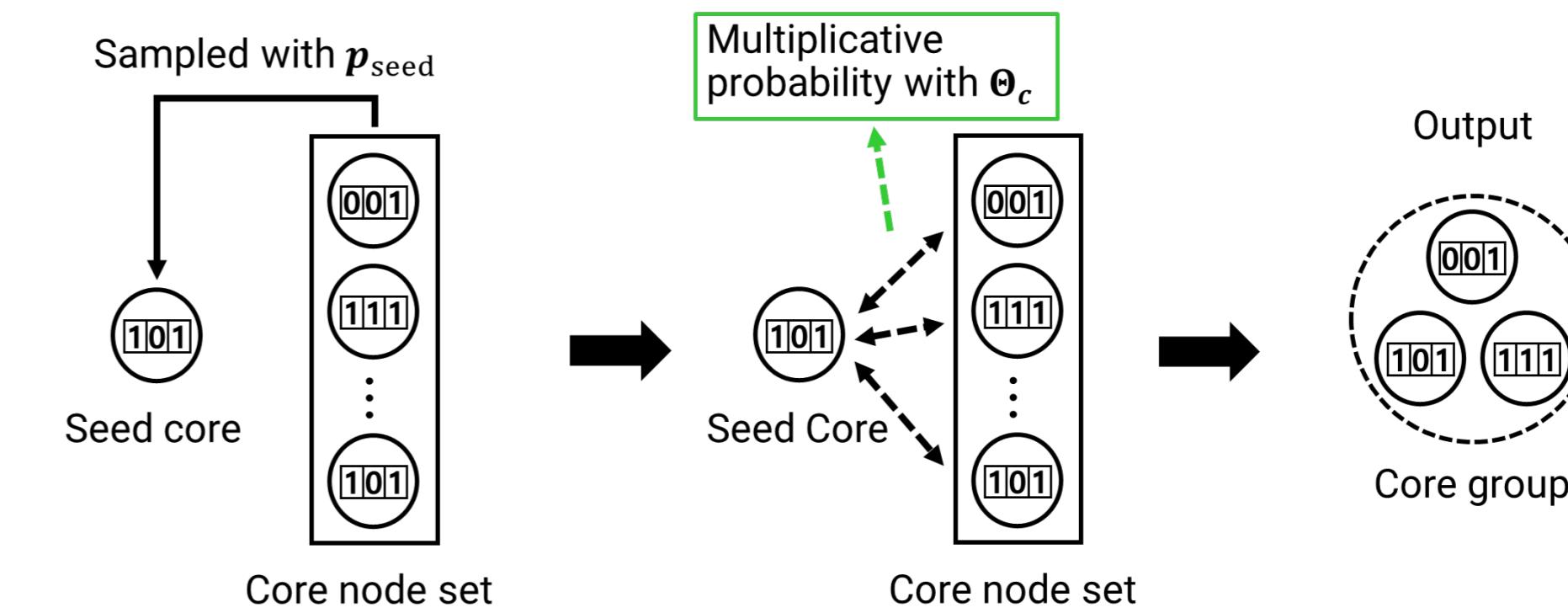
Idea 3: Hyperedge Formation via Series of Attachments

- NoAH models formation of each hyperedge as a series of attachments: (1) core group construction, and (2) fringe attachment
- By Idea 3, NoAH reduces search space for hyperedge construction, achieving tractability.

Details of Hyperedge Formation by NoAH

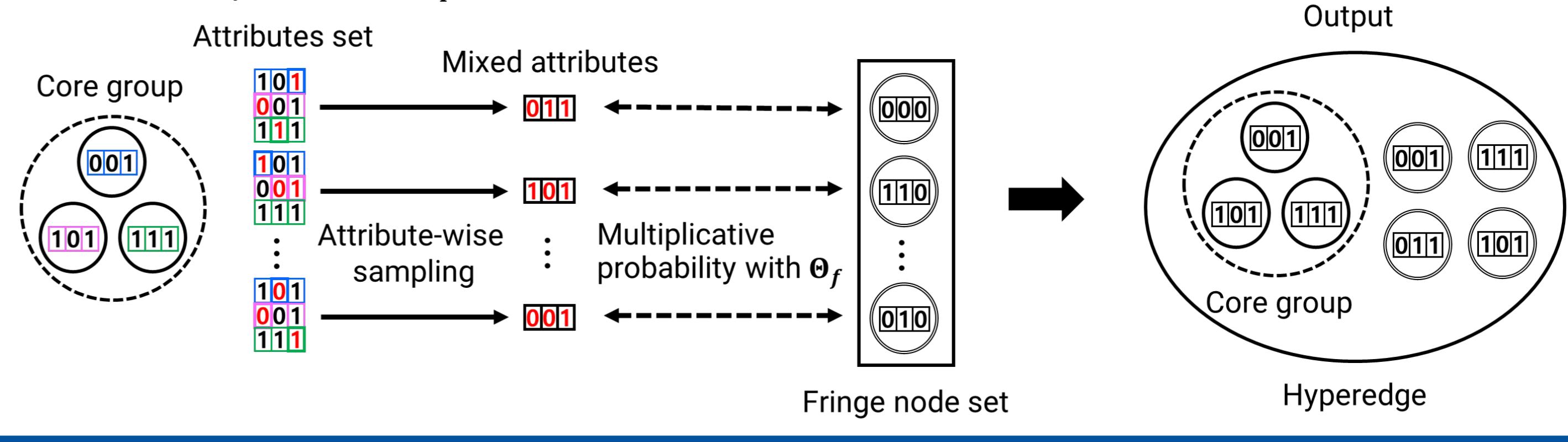
1. Core group construction

- 1-1. Sample a seed core from core nodes based on seed core probability p_{seed} .
- 1-2. Attach other core nodes to the seed core using Eq. (1) with core affinity matrices Θ_C .



2. Fringe attachment

- 2-1. Generate representative attribute of the core group by attribute-wise sampling.
- 2-2. Attach fringe nodes to the core group using Eq. (1) with mixed attribute and fringe affinity matrices Θ_F .



NoAHFit: Parameter Fitting Algorithm for NoAH

Overview of NoAHFit

- The formation probability of each hyperedge in NoAH can be parameterized through:
 - p_{seed} : seed core probability
 - Θ_C, Θ_F : core and fringe affinity matrices
- NoAHFit** fits these parameters to generate hypergraphs resembling a given hypergraph.
- NoAHFit aims to maximize the likelihood of the given hypergraph (i.e., the product of the likelihood of each hyperedge) and employs gradient descent.

Experimental Results

Reproduction of Structure-attribute Interplay

- We evaluate the **structure-attribute interplay** reproduced by hypergraph generators.
- 10 hypergraph generators, including:
 - NoAH** (fitted by NoAHFit) & **NoAH-CF** (a variant without core-fringe node hierarchy)
 - 9 datasets from 4 different domains: academic paper, contact, review, and online Q&A.
 - 3 complementary metrics:
 - Type-s affinity ratio scores (T2, T3, T4): fine-grained patterns in hyperedge attribute dist.
 - Hyperedge entropy (HE, HOHE): coarse-grained patterns in hyperedge attribute dist.
 - Node homophily score (NHS): node-level patterns of attribute dist.

	Rank 1	Rank 2	Rank 3	*A.R.: average ranking
HYPERC	27.3	53.0	63.6	6.8
HYPERPA	27.3	55.4	71.2	1.15
HYPERRF	24.1	54.3	60.5	0.449
HYPERLP	27.3	52.4	68.3	1.026
hyper dK-series	31.4	52.4	61.6	1.249
THERA	26.0	50.6	67.0	0.976
HYCoSBM	11.8	57.9	72.1	0.306
HYREC	25.3	50.6	61.8	1.138
NoAH	21.0	47.8	55.1	0.275
NoAH-CF	21.8	49.7	58.0	0.363
	0.294	0.229	1.8	
	1.188	0.402	3.7	

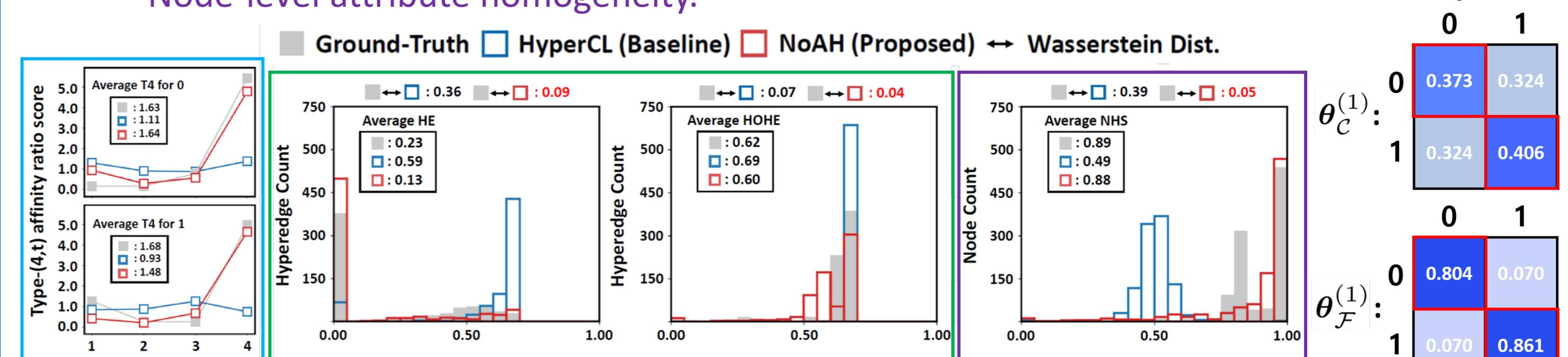
(e) Amazon Music (NoAH ranks first overall)

(j) Average Rank over Nine Datasets (NoAH ranks first overall)

NoAH reproduces most realistic structure-attribute interplay

Case Study

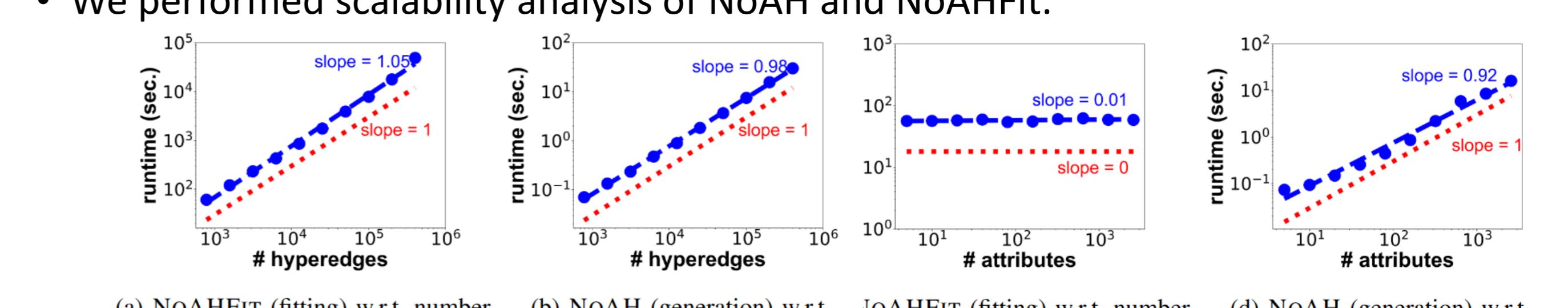
- The interplay between the structure and an attribute is closely examined in the (1) **original hypergraph** (Amazon Music), hypergraphs generated by (2) **HyperCL**, and (3) **NoAH**.
- Each results below indicate NoAH successfully reproduces:
 - Detailed attribute distributions in size-4 hyperedges**.
 - Hyperedge-level attribute homogeneity**.
 - Node-level attribute homogeneity**.



NoAH models the characteristic of each attribute (here, homophily) through affinity matrices

Scalability Analysis

- We performed scalability analysis of NoAH and NoAHFit.



Both NoAH and NoAHFit are scalable w.r.t. the number of hyperedges and attributes