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Abstract—In many real-world scenarios, interactions happen
in a group-wise manner with multiple entities, and therefore,
hypergraphs are a suitable tool to accurately represent such
interactions. Hyperedges in real-world hypergraphs are not
composed of randomly selected nodes but are instead formed
through structured processes. Consequently, various hypergraph
generative models have been proposed to explore fundamental
mechanisms underlying hyperedge formation. However, most
existing hypergraph generative models do not account for node
attributes, which can play a significant role in hyperedge for-
mation. As a result, these models fail to reflect the interactions
between structure and node attributes.

To address the issue above, we propose NOAH, a stochastic
hypergraph generative model for attributed hypergraphs. NOAH
utilizes the core—fringe node hierarchy to model hyperedge
formation as a series of node attachments and determines
attachment probabilities based on node attributes. We further
introduce NOAHFIT, a parameter learning procedure that allows
NOAH to replicate a given real-world hypergraph. Through
experiments on nine datasets across four different domains, we
show that NOAH with NOAHFIT more accurately reproduces
the structure-attribute interplay observed in the real-world
hypergraphs than eight baseline hypergraph generative models,
in terms of six metrics.

Index Terms—Hypergraph, Generator, Node Attribute

I. INTRODUCTION

Many real-world interactions occur in groups, such as co-
authorship among researchers, group discussions on online
Q&A sites, and co-purchasing of items. Hypergraphs, which
consist of hyperedges, naturally and effectively represent
group interactions involving an arbitrary number of individ-
uals or entities. Especially, hypergraph modeling has shown
effectiveness in a variety of applications, including clustering
[1], [2], classification [3], and anomaly detection [4], [5].

Hyperedges in real-world hypergraphs are not composed of
random nodes but are generally formed in a more systematic
manner. For instance, real-world hypergraphs often exhibit
high-degree nodes [6], densely overlapping hyperedges [7],
and high transitivity [8].

Building upon these findings, a number of hypergraph
generative models have been proposed, incorporating hyper-
edge generation mechanisms that lead to realistic hypergraph
structures. These hypergraph generation models allow a better
understanding of real-world hypergraphs, and they are also
employed in various data-mining applications, including com-
munity detection [9]-[11], and hyperedge prediction [12].

* Equal Contributions

Despite the success of hypergraph generative models, they
mostly overlook interplays between hypergraph structure and
node attributes. Node attributes are commonly associated with
real-world data. For example, in co-authorship hypergraphs,
where nodes represent authors and hyperedges represent co-
authored publications, node attributes, such as affiliation and
field of study, offer valuable information. Especially, as ex-
emplified by homophily [13], [14], such node attributes can
influence the formation of collaborations (i.e., hyperedges).

Thus, in this paper, we propose NOAH (Node Attribute
based Hypergraph generator), a novel hypergraph generative
model based on node attributes. Since a hyperedge can involve
an arbitrary number of nodes, the number of hyperedge candi-
dates increases exponentially with the number of nodes. As a
result, generating a hypergraph by considering the formation
probabilities of all candidates is computationally intractable.
To address this challenge, NOAH models the formation of
each hyperedge as a series of attachments of nodes to its
seed node(s). The attachment probabilities are determined by
node attributes. Specifically, we assign the degree of affinity
based on the values of each node attribute, and we obtain
the final attachment probability as the product of the affinity
scores across all attributes. In addition, NOAH incorporates a
core—fringe node hierarchy into the process to enhance realism.

We also introduce NOAHFIT, an algorithm designed to
fit the parameters of NOAH to a given hypergraph. The
hyperedge formation probabilities in NOAH are expressed
through a parameterized formulation, and NOAHFIT updates
the parameters to maximize the probabilities, capturing the
structure-attribute interplay in the given hypergraph.

In our experiments, we extensively evaluate hypergraph gen-
erative models using six measures on their ability to capture
structure—attribute interplay in nine real-world hypergraphs.
As exemplified in Figure 1, NOAH, fitted by NOAHFIT,
outperforms all eight existing hypergraph generative models
in the overall assessment across the measures.

Our contributions are summarized as follows:

« Model: We propose NOAH, a stochastic generative model
for attributed hypergraphs that produces a realistic interplay
between structure and attributes.

« Fitting Algorithm: We develop NOAHFIT, a parameter
fitting algorithm for NOAH that captures the relationship
between structure and node attributes in a given hypergraph
to maximize the formation probabilities of its hyperedges.
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Fig. 1.

Structure—attribute interplay with respect to the first node attribute in the Amazon Music dataset. Our proposed generative model, NOAH, fitted

by its parameter learning algorithm NOAHFIT, effectively captures the interplay between structure and node attributes, outperforming the baseline model
(HyperCL). Refer to Section III-B for the definitions of the measures and to Section VI-C for the interpretation of the results.

« Experiments: We empirically show that NOAH better re-
produces the structure—attribute interplay in real-world hy-
pergraphs than eight baseline hypergraph generative models.

For reproducibility, we make the source code and data

publicly available at https://github.com/jaewan01/NoAH.

II. RELATED WORK

In this section, we review prior work on the generation of
graphs and hypergraphs.

A. (Hyper)graph Generative Models

(Hyper)graph generative models are designed to generate
structures resembling real-world hypergraphs [15], [16], often
to uncover potential mechanisms behind such structures. To
this end, for example, several models exploit node hierar-
chies [8], [17]-[19], which are commonly found in the real
world [20]-[23]. In our model, NOAH, we capture such hier-
archies through a simple yet effective core—fringe structure.

Recently, various deep learning based (hyper)graph gen-
erative models have been introduced, such as variational
autoencoders [24], generative adversarial networks [25], [26],
and diffusion or hierarchical models [27]. However, these
models mostly require a large collection of graph instances for
training, while the aforementioned models operate on a single
instance. Moreover, deep learning models often struggle to
provide insights into the generative mechanisms of real-world
(hyper)graphs due to their intrinsic black-box nature.

B. Attributed-aware (Hyper)graph Generative Models

Node attributes can play a crucial role in graph generation,
as demonstrated by homophily, a prevalent property of real-
world (hyper)graphs where similar nodes tend to connect [13].
Accordingly, several models incorporate node attributes, in-
cluding the exponential random graph model [28], the stochas-
tic block model [29], and the latent space model [30]. Among
them, the Multiplicative Attribute Graph (MAG) model [31]
is distinctive in that node attributes directly govern edge
formation via a multiplicative probability function.

However, very few hypergraph generative models incorpo-
rate node attributes. One exception is a stochastic block model
variant specifically designed for community detection [11]. In
this model, node attributes are conditionally independent of

TABLE 1
FREQUENTLY-USED SYMBOLS.

Notation Definition

H=WVEX) hypergraph with nodes V, hyperedges £
X € {0, 1}“}‘ Xk node attribute matrix (binary)

C set of core nodes

F set of fringe nodes

set of core group affinity matrices
set of fringe attachment affinity matrices

Oc ={0c,,.--,0c,}
@;z{@;l,...,efk}

the hypergraph structure given the latent community structure,
meaning attributes do not directly drive hyperedge formation.
In contrast, in our model, NOAH, hyperedges are formed
explicitly based on attribute relationships among nodes.

III. PRELIMINARIES

In this section, we introduce (1) key notations, (2) six
measures for evaluating the interplay between structure and at-
tributes, (3) MAG [31] as a preliminary model, and (4) UMHS
[32] as a core-node identification method for hypergraphs.

A. Notations

First, we discuss the notations used in this paper. Refer to
Table I for the frequently-used notations.
Attributed Hypergraphs. An attributed hypergraph H
(V,&,X) consists of a set of nodes V = {vy,--- vy}, a
set of hyperedges & = {e1,---,e|g|}, and a node attribute
matrix X € RIVI*¥_ Each hyperedge e € £ is a non-empty
subset of nodes, ie., ¢ C V,|e|] > 1. The i-th row of X,
denoted as x; = X . € R”, represents the attribute vector of
node v; € V. We use xgl) € R to denote the [-th attribute value
of node v;. In this work, we assume binary node attributes,
ie., X € {0,1}"}‘”, which simplifies both model design
and implementation while remaining valid for many real-world
datasets. Moreover, categorical and continuous attributes can
also be converted into binary ones via one-hot encoding and
thresholding, respectively, as in our experiments.

B. Measures for Structure-Attribute Interplay

We introduce several measures for evaluating the interplay
between structural patterns and node attributes, categorized
into: (1) hyperedge-level measures (hyperedge entropy and


https://github.com/jaewan01/NoAH

affinity ratio score), which capture how node attributes are
distributed within hyperedges, and a (2) node-level measure
(node homophily score), which measures the tendency of
nodes to form hyperedges with others of similar attributes.
Type-s Affinity Ratio Scores. Veldt et al. [33] introduced a
mathematical framework to quantify the significance of a label
on group interactions of a fixed size s. First of all, for each
affinity type t € {1,2,...,s}, they defined the type-(s, t)
affinity score for label Y as follows:

Lvevy ds+(v)
2vevy d)
where Vy is the set of nodes with label Y, d(v) the degree of
node v, and d; +(v) the number of size s hyperedges containing
v and t — 1 additional nodes with v’s label (Y). It quantifies
how frequently nodes with label Y appear in size-s hyperedges
with exactly ¢ such nodes. The type-(s, t) baseline score
bs (") for label Y is the probability that a node with label Y’
joins a size-s hyperedge containing exactly ¢ nodes with label
Y, if s — 1 other nodes are selected uniformly at random, i.e.,
(|VtY_|1*1> (|V\*|VY|)

s—t
(750
We examine the type-(s, t) affinity ratio score for label Y,
which is the ratio of the affinity score to the baseline score,
ie., Z:(z)) , to evaluate the significance of the combination of
t nodes labeled Y in a fixed hyperedge size s.

Since we assume binary attributes, we consider the type-(s,
t) affinity ratio score for values 0 and 1 of each attribute. In
this work, we focus on s € {2, 3,4}, as small hyperedges are
common in many real-world hypergraphs, and to allow reliable
statistics. For simplicity, we refer to the type-(s, 1) to type-(s,
s) affinity ratio scores as the type-s affinity ratio scores.
(Higher-order) Hyperedge Entropy. Lee et al. [14] observed
that real-world hyperedges exhibit label homogeneity, contain-
ing nodes with similar labels more often than their randomized
counterparts. This effect persists even after multiple steps of
propagation of labels to incident nodes and hyperedges. To
measure the label homogeneity, they utilized hyperedge en-
tropy, defined as the entropy of the labels of nodes incident to
each hyperedge. They also introduced higher-order hyperedge
entropy, measuring the entropy after label propagation.

In this work, we consider the distribution of hyperedge
entropy and higher-order hyperedge entropy of each node
attribute to measure the dominance of attributes on hyperedge
formation. A distribution skewed toward O reflects that hyper-
edges mostly comprise nodes with identical attribute values.
Node Homophily Score. We propose a node homophily score
to quantify the homogeneity of nodes in a hypergraph. Node
homophily score of node v at [-th attribute is defined as:

Zee&, {u €Ee,uFv | X[u’ l] = X[”?”H
ny[l] := ,
Dece, (lel = 1)
where n,[l] is a node homophily score of node v for the I-
th attribute, £, C £ is a set of hyperedges containing v, and
1 €{1,2,...,k}. This measure indicates the ratio of incident

hst(Y) := (1)

bs 1 (Y) := 2)

3)

nodes that share the same [-th attribute value with node v,
with a high value reflecting a greater tendency for v to form
hyperedges with nodes having the same attribute value. We
consider the distribution of node homophily score for each
attribute to capture node-level homogeneity in a hypergraph.
Overall, the above measures offer complementary perspec-
tives on structure-attribute interplay: (1) the type-s affinity
ratio score quantifies the fine-grained patterns in hyperedge-
attribute distributions, (2) the (higher-order) hyperedge en-
tropy quantifies the coarse-grained patterns in hyperedge-
attribute distributions, and (3) the node homophily score
quantifies the node-level patterns of attribute distributions.

C. MAG: Multiplicative Attribute Graph Model

Kim and Leskovec [31] proposed the Multiplicative At-
tribute Graph (MAG) model to capture how node attributes
affect edge formation in pairwise graphs. Given a set of nodes
V and an associated node attribute matrix X € {0, 1}|V‘Xk,
MAG estimates the probability of edges based on node at-
tributes. ! Specifically, MAG defines a set of attribute affin-
ity matrices © = {61,...,0;}, where each 0, € R2?*2
captures the affinity between values of the [-th attribute,
with 0;[x1,z2] € [0,1] denoting the affinity between binary
attribute values x1,x2 € {0,1}. For the probability P(v;,v;)
of an edge between nodes v; and v;, MAG multiplies the
affinities across all k attributes as follows:

k
P(Ui, Uj) = Hl:l Bl[Xgl), Xg-l)]. (4)

Inspired by MAG, we develop a model for group interactions,
which require more complex modeling of how node attributes
collectively influence group formation. Moreover, compared
to MAG, our model additionally captures commonly-observed
structural node hierarchies by distinguishing between core and
fringe node roles in group formation.

D. UMHS: Union of Minimal Hitting Sets

Amburg et al. [32] defined a hitting set of a hypergraph
as a set of nodes that intersects every hyperedge, i.e., a set
S satisfying Ve € £, Jv € S st. v € e. Building on
this concept, they proposed the union of minimal hitting sets
(UMHS) algorithm to identify core nodes in a hypergraph.
The algorithm consists of three steps: (1) initialize S = {},
generate a random permutation of the hyperedges, and traverse
them, adding all nodes in a hyperedge e to S whenever
SNe = (, (2) generate a random permutation of .S and traverse
them, removing any node v if S\{v} remains a hitting set, and
(3) repeat the above two steps with different permutations and
take the union of the resulting hitting sets.

IV. PROPOSED GENERATION METHOD: NOAH

In this section, we introduce NOAH, a novel hypergraph
generative model based on node attributes.

'While MAG can consider a general categorical attribute, in most cases
simplified MAG model with binary attribute is utilized.
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Fig. 2. Hyperedge generation process of NOAH consists of two steps: (1) Core group construction: sample a seed core node vs according to py..q and attach
additional core nodes to vs to form a core group Cz, and (2) Fringe attachment: attach fringe nodes to core group Cz based on mixed attribute vector xc,
obtained by attribute-wise sampling from Xc_. The attached core and fringe nodes, together with the seed node, form a hyperedge.

A. Ideas behind NOAH.

In real-world hypergraphs, node attributes play a crucial role
in hyperedge formation. For example, in some hypergraphs,
hyperedges among nodes with similar attributes are common
(homophily) [14], while in others, hyperedges among nodes
with dissimilar attributes (heterophily) are common [34].
NOAH captures such attribute-structure interplay to generate
more realistic hypergraphs.

Idea 1. We model hyperedge formation using node attributes
to reflect their interplay with structure.

Moreover, many real-world hypergraphs exhibit hierarchical
structures [22], [23], where certain nodes consistently play
central roles in group interactions, while others interact more
peripherally. This hierarchy has been incorporated into several
generative models [8], [18], [19]. In NOAH, we introduce a
surprisingly simple yet effective approach to reflect hierarchy
by dividing nodes into two groups with distinct structural roles.

Idea 2. We divide nodes into core and fringe nodes to capture
the hierarchical structure commonly observed in real-world
hypergraphs. Core nodes play a more central role in hyperedge
formation, while fringe nodes participate more peripherally.

Since the number of hyperedge candidates increases expo-
nentially with the number of nodes, generating a hypergraph
by considering the formation probabilities of all candidates is
computationally intractable. To address this challenge, NOAH
incrementally constructs each hyperedge through attachment.

Idea 3. We model the formation of each hyperedge as a series
of attachments of nodes to its seed node(s).

B. Model Details of NOAH.

Based on Idea 3, NOAH generates a hypergraph by stochas-
tically sampling nodes to attach to each hyperedge, as outlined
in Algorithm 1 and illustrated in Figure 2. In line with Idea 1,
nodes are sampled based on attribute relationships, using the
node attributes X. To incorporate Idea 2, the node set V is
partitioned into two disjoint subsets: the core node set C C V

and the fringe node set F C V), s.t. CNF = and CUF =V,
and the two groups play distinct roles in hyperedge formation.
Combining three ideas, NOAH generates each hyperedge in a
two-step process. First, a subset of core nodes from C form a
core group based on attribute affinities. Second, fringe nodes
from F attach to the core group according to attribute affinity
with the group, completing the hyperedge.

« Step 1. Core Group Construction (lines 3 — 8): To initiate
hyperedge construction, NOAH begins by forming a subset
of core nodes C; C C, which plays a role as the structural
nucleus of the hyperedge. Specifically, it first samples a seed
core node vs € C according to a probability distribution
Pseed € [Oa 1]‘C|’ where ”pseed”l = 17 and pseed(v) is the
probability of selecting node v € C as a seed core. Then,
NOAH calculates the inclusion probability of remaining
core node v, € C \ {vs} to the core group based on its
attribute affinity with the seed node v, computed as:

PC(UC|US7 G)C) = H

where O¢ = {0&1), e G(Ck)} is the set of attribute affinity
matrices modeling interactions among core nodes, and each
Hél ) € R2%2 captures the affinity between binary values of
the [-th attribute.

o Step 2. Fringe Attachment (lines 9 — 14): Subsequently,
NOAH samples fringe nodes from F to attach to the core
group C; and complete the hyperedge construction. For
each fringe node vy € F, NOAH first constructs a binary
attribute vector x¢. € {0, 1}* that summarizes the attributes
of the nodes in the core group x¢,. Each [-th attribute x((i)

is independently sampled as:

k
00D XL o)

l

1
X(C]) ~ Bernoulli < (6)

0
‘Cé| Zviecé % ) ’
which intuitively, samples the attribute according to its
average presence among the group members. Then, vy is
considered for attachment with the following probability:

k
Pr(vslCe,07) = |

=1

o <,



Algorithm 1: NOAH

Input: (1) number of hyperedges m
(2) node attribute matrix X € {0, 1}/V/**
(3) set of core nodes C
(4) set of fringe nodes F
(5) seed core probabilities Pseed
(6) set of core group affinity matrices O¢
(7) set of fringe attachment affinity matrices ©
Output: generated hypergraph H = (V,£)
1t H=V,&=0)
2 foreach i =1,--- ;m do
// 1. Core Group Construction

3 Sample vs ~ Pyooqr Vs € C
4 Cé < {’05}
5 for each v. € C\ {vs} do
6 p + Pe(vc|vs, ©c) > Eq. (5)
7 with probability p do
38 Cs < Cs U{vc.}
// 2. Fringe Node Attachment
9 F:+ O
10 for each vy € F do
11 Construct xc, of Cs > Eq. (6)
12 q%Pf(vf‘Cé,@}') » Eq. (7)
13 with probability q do
14 Fe « Fe U {vs}

15 é~eC~gu]-'é
16 | £+ EU{E}

17 return H = (V, &)

where O r = {0(]_}), cee 9(}]-")} is the set of attribute affinity
matrices that model interactions between the core group and
fringe nodes, and each 05@ € R2?*2 captures the affinity
between binary values of the [-th attribute.

C. Theoretical Analysis of NOAH.

We analyze complexity and structural properties of NOAH.
Complexity. For core group construction, sampling the seed
core node vy takes O(|C|) time, while computing attachment
probabilities P for the remaining core nodes C\ {v, } requires
O(k|C|) time. For fringe attachment, computing the attachment
probabilities Pz for fringe nodes F takes O(k|F]|) time.
NOAH generates a hypergraph H consisting of m hyperedges
by repeating these two steps m times. Thus, the overall time
complexity of the hypergraph generation process of NOAH is
O(mk|V|) where |V| = |C|+]|F|. Regarding space complexity,
NOAH requires O(1) space per hyperedge to store the seed
core. The sampled attribute of a core group requires O(k)
space, which can be discarded after computing the attachment
probabilities for the fringe nodes. Thus, the overall space
complexity of the hypergraph generation by NOAH is O(k).
Structural Properties. NOAH is capable of generating hy-
pergraphs with heavy-tailed node degree distributions, which
is common in real-world hypergraphs [16], [19].

Theorem 1. There exist configurations on node attributes and
parameters on NOAH such that the generated hypergraph
follows a power-law degree distribution.

Proof of Theorem 1 is in Appendix VIII [35].

V. PROPOSED FITTING METHOD: NOAHFIT

In this section, we propose NOAHFIT, a method for tuning
the parameters of NOAH to fit a given hypergraph, outlined
in Algorithm 2. The goal of fitting is to enable NOAH to
generate hypergraphs that closely resemble the input in both
structure and attribute patterns. This is useful for various
downstream applications, such as data anonymization and
simulation, where generating realistic yet controllable hyper-
graphs is critical. We begin by describing how the nodes V is
partitioned into core nodes C and fringe nodes F. Next, we
derive hyperedge likelihoods, which are a key component for
parameter optimization. Then, we discuss parameter optimiza-
tion for maximizing the likelihood of the given hypergraph.
Finally, we analyze the complexity of NOAHFIT.

A. Core and Fringe Partition

Given a hypergraph H, NOAHFIT partitions the node set
Y into a core node set C and a fringe node set F. We utilize
UMHS (see Section III-D) to identify the core node set C.
Then, the fringe set is defined as its complement, i.e., F =
V\C. Each hyperedge e € £ consists of a subset of core nodes
C. = eNC and a subset of fringe nodes F, = e N F.

B. Derivation of the Likelihood of Each Hyperedge

Given the structural and attribute information of the hyper-
graph (i.e., C, F, and X) and the parameters of NOAH (i.e.,
Peeed» Oc, and Ox), we now derive the likelihood of each
hyperedge e € &, denoted as P(e|C, F, X, Dyed, ©c, OF),
which we refer to as P(e) for brevity. The likelihood is
decomposed into two components: (1) Peore(e), the likelihood
of core group construction, and (2) Pring(€), the likelihood
of fringe node attachment. The total likelihood is then given
by P(e) = Pcore(e) : Pfringe(6)~
Likelihood of Sampling Core Nodes. Given a hyperedge e,
the likelihood Peore(e) of its core group C, is:

Peore(€) = szece Pyeca(Vs) - Pe(Ce \ {vs}vs), > (8)

where P¢(C. \ {vs}|vs) is the likelihood of sampling the
remaining core nodes C. \ {vs} C C given the seed node v;,
which can be written as:

Pe(Ce\{vstlvs) = H Pe(velvs)- H (1=Pe(ve|vs)).

v E€Ce\{vs} v.EC\Ce

For brevity, we omit ©¢ in the above equations.

Likelihood of Sampling Fringe Nodes. Given the core
group C. of the hyperedge e, the likelihood of its fringe
subset F, is:

Pringe(e) = [] Pr(vslCe)-
’L)fG]'—e

IT (—=Prvslce), ©

vf€.7:\.7'-a

where Pr(vs|C.) is the probability of attaching fringe node
vy to the core group C.. This probability is obtained by

2For training stability, in practice, we implement NOAHFIT by using a
normalized core group likelihood, where Peore(€) is divided by the total seed
probability over the core group, i.e., Peore(€)/ Zvcece Peced (Ve)-



marginalizing over the stochastic binary attribute vector xc,

of C,. as follows:
k !
P}'(vf|ce) = ]EXCC |:Hl—1 Xg‘ )]:|
0% [0,x"] +p - 0% 11, %

_H[ pO)

where each [-th component of x¢, is sampled as a Bernoulli
(l)
\c \ Dviec. :

O]

l
g

random variable with mean equal to p

C. Update of the Parameters of NOAH

We present the loss functions used to update the parameters
of NOAH (spec., Pyeq. Oc, and O r) as follows:

« Negative Log-likelihood Loss (L.q4¢): For each hyperedge
e, we calculate the negative log-likelihood, i.e., —log P(e).
These values are then summed over all hyperedges to
compute the negative log-likelihood loss:

= Zees —log P(e).

o Degree and Cardinality Losses (L4, and L.,q): Unlike
many existing hypergraph models that rely on degree or
cardinality distributions as explicit model inputs, NOAH
learns to reproduce realistic degree and cardinality patterns,
without using them as model inputs (only using them for
fitting), demonstrating its expressive modeling capability.
To encourage this behavior, we use a mean squared error
(MSE) loss that aligns the expected degrees and hyperedge
sizes with the distributions in the original hypergraph:

Edeg = MSE(d,., (ic) + MSE(df, d~f)

Lcara = MSE(ce, ¢:) + MSE(cy, ¢¢),
where d.,dy denote the degrees of core and fringe nodes;
and c., ¢y denote the cardinalities of core and fringe subsets
within hyperedges. The corresponding quantities with tildes
indicate their expected values under NOAH. We compare
distributions by sorting them and computing the MSE be-
tween corresponding values, focusing on overall distribu-
tional similarity rather than individual node identities.

ﬁedge

The final loss is a weighted sum of the above losses (see
Line 12 of Algorithm 2), with the weights as hyperparameters.

D. Complexity of NOAHFIT.

We provide the time and space complexity analysis of
NOAHFIT. Regarding the time complexity, the core and fringe
partitioning [32] requires O(m|V|) time. For each hyperedge
e € &, computing its likelihood P(e) takes O(k|V||C,|) time.
With attachment probabilities calculated during the computa-
tion of P(e), calculation of expected degree and cardinality
from NOAH takes O(|V|) time. Repeating this for 7" training
epochs over all hyperedges results in a total computation cost
of O(TE|V|Y_.ce [Ce|)- Regarding the space complexity, core
and fringe partition takes O(|V|) space. For each hyperedge
e € £, computing its likelihood P(e) takes O(k + |V|) space.
Expected degree and cardinality require O(m + |V|) space.
Thus, the total space complexity is O(k + m + |V]).

3Initialization method of parameters is explained in Appendix IX [35].

)

Algorithm 2: NOAHFIT

Input: (1) target hypergraph H = (V, £, X)
(2) number of epochs T', learning rate n
(3) loss weights waeg, Weard
Output: (1) set of core fringe nodes C
(2) set of core fringe nodes F
(3) seed core probabilities Pseed
(4) set of core group affinity matrices O¢
(5) set of fringe attachment affinity matrices ©
// 1. Core-fringe Split
1 Split V into C, F
2 Initialize peeea, Oc and O 5 3
3 foreacht=1,---,T do

// 2. Log-likelihood Loss
4 ﬁedge +~— 0
5 for each e € £ do
6 Ce+—eNC, Fe+eNF
7 L P(e) — Pcorc(e) ' Pfringe(e) > Eq. 8) & Egq. (9)
8

Eedge — »Cedge - IOg P(e)

// 3. Degree, Cardinality Losses

9 Compute d.,d; and é., ¢; using Pyees Oc and O 5
10 Lieg MSE(dC, d ) + I\/ISE(df7 df)

1 Leard < MSE(ce, ¢:) + MSE(cy, ¢5)

12 L+ Eedge + Wdeg * ['deg + Weard - L"card

// 4. Parameter Update

Pseed < Pseed + nvpseed[’

Oc¢ + Oc¢ + WVGCL

Or + Or+nVe L

6 return C, F, Pced, Oc, OF
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VI. EXPERIMENTS

In this section, we present experimental results demonstrat-
ing the effectiveness of NOAH and NOAHFIT.

A. Experimental Settings

Datasets. We use nine real-world hypergraphs from four
distinct domains (see Table II for some statistics):

o Academic Paper Domain (Citeseer, Cora [36]): Each

node is an academic paper. For the Citeseer dataset, each

hyperedge is a set of papers co-cited by a paper, and for the

Cora dataset, each hyperedge is a set of papers (co-)authored

by the same author. Node attributes are binary bag-of-words,

indicating whether a paper includes each keyword or not.

Contact domain (High School [37], Workspace [38]):

Each node is an individual, and each hyperedge is a group

of individuals in contact during a time interval. For the High

School dataset, node attributes include gender, class affilia-

tion, and Facebook account ownership. For the Workspace

dataset, node attributes represent the department of each
worker. Since all attributes are categorical, we apply one-hot
encoding to convert them into binary attributes.

« Review Domain (Amazon Music [39], Yelp Restaurant,
Yelp Bar [40]): Each node is a reviewer, and each hyperedge
is a group of reviewers who reviewed a certain product or
business. Node attributes indicate the types of products or
businesses that each reviewer has reviewed at least once.

« Online Q&A Domain*(Devops, Patents): Each node rep-
resents a user on Stack Exchange, and each hyperedge cor-

“https://archive.org/download/stackexchange



TABLE II
SUMMARY STATISTICS OF 9 REAL-WORLD HYPERGRAPHS FROM 4
DOMAINS. |V|: THE NUMBER OF NODES. |€|: THE NUMBER OF
HYPEREDGES. k: THE NUMBER OF ATTRIBUTES. THE CORE-SET SIZE |C|
AND THE FRINGE-SET SIZE | F| ARE OBTAINED BY NOAHFIT.

Dataset Imler | &k el | 1F
Citeseer 1,458 | 1,079 | 3,703 597 861
Cora 2,388 | 1,072 | 1,433 841 1,547
High School 327 | 7,818 12 288 39
Workspace 92 788 5 71 21
Amazon Music 1,106 686 7 379 727
Yelp Restaurant 565 594 9 273 292
Yelp Bar 1,234 | 1,188 15 625 609
Devops 5,010 | 5,684 | 429 2,003 | 3,007
Patents 4,458 | 4,669 | 2,170 894 | 3,564

responds to a post involving a set of users. Node attributes

indicate the set of tags associated with the posts each user

has participated in.
Note that our experiments are done with varying numbers of
attributes, scaling from 5 (Workspace) to 3,703 (Citeseer).
Baselines. We consider eight baseline generative models:
HYPERCL [7], HYPERPA [6], HYPERFF [41], HYPER-
LAP [7], hyper dK-series [42], THERA [8], HYCOSBM [11],
HYREC [43]. Among the baselines, HYCOSBM explicitly
utilizes node attributes. For HYPERCL, HYPERLAP, and
hyper dK-series, since node identities are preserved in the
generated hypergraphs, we assign node attributes based on
their correspondence to the original nodes. For HYPERPA,
HYPERFF, THERA, and HYREC, where node identities are
not preserved during the generation process, we assign node
attributes randomly. The hyperparameter search spaces for our
method and the baselines are detailed in Appendix X [35].
Evaluation. We compare NOAH and the baselines in terms
of their ability to reproduce the structure-attribute interplay
observed in real-world hypergraphs based on the metrics
described in Section III-B. For type-s affinity ratio scores,
we evaluate hypergraph generators by comparing the sum
of log scaled differences between the ground truth and the
generated hypergraphs over all ¢ € [1, s] and all attributes. For
(higher-order) hyperedge entropy and node homophily score,
since they are presented as distributions for each attribute,
we calculated the sum of Wasserstein Distance between the
ground-truth and generated hypergraphs. We denote type-s
affinity ratio scores as Ts, hyperedge entropy as HE, higher-
order hyperedge entropy as HOHE, and node homophily score
as NHS. For each metric and dataset, we compute both the
raw values and the rankings of all compared models.
Machines. We conducted all experiments on a server with
RTX A6000 GPUs.

B. Performance Comparison

As shown in Table III, NOAH achieves the best average
rank in 5 out of 9 datasets. Averaged over nine datasets,
NOAH ranks first in four metrics (type-3 affinity score, type-4
affinity score, hyperedge entropy, and node homophily score),
second in type-2 affinity score, and third in higher-order hyper-
edge entropy. These results demonstrate the overall superiority

Fig. 3. 9<Cl) and 9;}) estimated by NOAHFIT on the Amazon Music dataset.
NOAHFIT captures homophily by assigning higher affinities to same attribute
value pairs (0 <+ 0 and 1 <+ 1) than to different attribute value pairs (0 <> 1).
of NOAH in capturing the structure—attribute interplay of real-
world hypergraphs.

However, there are cases where NOAH underperforms.
First, its relatively low performance in the online Q&A domain
datasets (Devops and Patents) is likely due to the weak
correlation between attribute and structure in these datasets. In
the datasets, baselines that explicitly preserve degree and size
distributions, including HYPERCL, HYPERLAP, and hyper
dK-series, perform well. Second, HYPERLAP and THERA
tend to preserve higher-order hyperedge entropy (HOHE) more
effectively than NOAH. This is because, due to the label-
propagation steps, HOHE is strongly influenced by hyperedge
overlaps, which HYPERLAP and THERA explicitly target.

C. Case Study

To gain deeper insight into the effectiveness of NOAH,
we conduct a case study on the Amazon Music dataset [39].
In the Amazon Music dataset, a value of the first node
attribute indicates whether a reviewer has reviewed music in
the New York Blues genre (1) or not (0). For this attribute, we
compare the structure-attribute interplay metrics between (1)
the ground truth hypergraph, (2) the hypergraph generated by
HYPERCL, and (3) the hypergraph generated by NOAH with
NOAHFIT. As shown in Figure 1 in Section I, the distributions
of hyperedge entropy and node homophily scores are highly
skewed toward O and 1, respectively. Additionally, the type-
(4, 4) affinity ratio score is high for both attribute values
0 and 1, indicating that many size 4 hyperedges consist of
nodes sharing the same value for the first attribute. These
results suggest that nodes in the Amazon Music dataset exhibit
strong homophily with respect to the first attribute, and that
the node attribute plays a crucial role in hypergraph formation.
Whereas the baseline model, HYPERCL, fails to capture this
structure—attribute interplay, NOAH successfully captures it
through the use of affinity matrices shown in Figure 3.

D. Ablation Study

To assess the contribution of the core—fringe node hierarchy
in NOAH, we compare its performance with a variant, NOAH-
CF, which omits this hierarchical structure. In NOAH-CF,
each hyperedge is generated by sampling a seed node from
the entire node set and attaching additional nodes directly,
without distinguishing between core and fringe roles (and
therefore without collective consideration of multiple core
nodes). As reported in Table III, NOAH consistently outper-
forms NOAH-CF across all datasets, showing the importance
of the core—fringe hierarchy in realistic hyperedge formation.



TABLE III
NOAH REPRODUCES STRUCTURE-ATTRIBUTE INTERPLAYS OVERALL BEST ACROSS 9 DATASETS. TOP THREE RESULTS ARE HIGHLIGHTED IN BLUE

(FIRST), GREEN (SECOND), AND

(THIRD). REFER TO SECTION VI-D FOR NOAH-CF, A VARIANT OF NOAH. A.R. DENOTES AVERAGE RANK.

\ T2 T3 T4 HE HOHE NHS \ A.R. \ T2 T3 T4 HE HOHE NHS \ A.R.
HYPERCL 6,816 10,702 10,672 19.81 122.02 19.94 | 6.7 HYPERCL 8.02 6364 799 | 7.0
HYPERPA 6,871 10,739 10,559 25.90 103.76 22.46 | 7.7 HYPERPA 4,615 1447 6262 1278 | 83
HYPERFF 6,472 10,483 10,677 66.97 4.0 HYPERFF 4518 806 3958 6.76 | 5.0
HYPERLAP 6,757 10,737 10,311 18.33 5540 1943 | 5.0 HYPERLAP 4523  7.65 5340 7.13 | 52
hyper dK-series | 6,968 102.83 16.09 hyper dK-series 4,502 724 5979 749
THERA 6,450 10,498 10,476 18.04 53.58 18.59 | 3.8 THERA 4492 694 7.20
HyCoSBM 10,613 10,278 19.89 135.30 38.60 | 6.0 HyCoSBM 4,049 69.77 15.02
HYREC 6,996 10,840 10,271 20.01 [ISWB7H 20.04 | 6.2 HYREC 2,075 4,163
NOoAH 2431 [4426 1539 | NOAH 2,058 4,517 41.64
NOAH-CF 9,036 14,550 13,515 48.26 106.32 121.04| 9.7 NOAH-CF 3,322 5951 5995 29.01 5735 70.15 | 9.3

(a) Citeseer (NOAH ranks first overall) (b) Cora (NOAH ranks second overall)

\ T2 T3 T4 HE HOHE NHS \ A.R. \ T2 T3 T4 HE HOHE NHS \ A.R.
HYPERCL 204 514 1064 1.180 1369 1.730 | 7.2 HYPERCL 7.5 17.3 13.0 0.599 0.181 0.890 | 7.0
HYPERPA 206 526 107.8 1.175 1421 1.654 | 8.0 HYPERPA 7.1 19.5 0.562 0217 0.835 | 6.0
HYPERFF 20.2 616 1065 1.017 1290 1.785 | 7.8 HYPERFF 6.3 14.9 13.9 0445 0399 0.801 | 52
HYPERLAP 20.3 51.6 102.0 1.187 0977 1714 | 6.0 HYPERLAP 7.3 19.9 12.6 0.564 0.184 0.878
hyper dK-series | 20.0 514 97.8 0931 1429 1.716 | 5.8 hyper dK-series 6.5 15,6 251 0408 0.178 0.814
THERA 199 512 998 1.166 THERA 5.7 13.7 16.7  0.542 0.820
HyCoSBM 52.1 97.9 1.819 1414 1.797 | 6.7 HyCoSBM 24.0 0.705 0.233 0.885 .
HYREC 19.8 540 |92 0.740 WO960N 1.637 | 4.3 HYREC 7.3 18.0 203 0371 0.301 6.2
NOAH 1.273 ST NOAH 20.0
NOAH-CF 19.2 103.9 1.176  1.635 | 3.7 NOAH-CF 7.3 18.4 0.283 0.905 | 6.0

(c) High School (NOAH ranks first overall) (d) Workspace (NOAH ranks first overall)

\ T2 T3 T4 HE HOHE NHS \ A.R. \ T2 T3 T4 HE HOHE NHS \ A.R.
HYPERCL 27.3 53.0 636 1.016 0.382 1.053 | 6.8 HYPERCL 178 589 904 0979 1.148 | 6.5
HYPERPA 27.3 554 712  1.154 0.527 1.096 | 8.8 HYPERPA 248 559 0.786 0.591 1.068 | 6.3
HYPERFF 24.1 543 605 0.449 1.055 | 5.2 HYPERFF 224 541 79.2 0.603 1.157 | 5.5
HYPERLAP 27.3 524 683 1.026 1.042 | 6.3 HYPERLAP 224 546 859 1.012 1.129 | 6.0
hyper dK-series | 31.4 524 616 1249 0450 1.026 | 7.3 hyper dK-series | 24.6  54.5 829 0.726 0.511 0978 | 5.2
THERA 26.0 506 67.0 0976 0394 1.003 | 5.0 THERA 21.0 543 80.6 0.704 0.484 0964 | 4.3
HYCoSBM 579 721 0.371  0.900 4.7 HyCoSBM 1025 [JOR281) 0.403
HYREC 50.6 61.8 1.138 0.402 0.982 HYREC 247 557 77.6 0797 0.523 0.968 | 5.7
NOAH 0.394 NOAH 0.967 1.670
NOAH-CF 0.363 1.188 NOAH-CF 21.6  66.5 86.3 1.232 3.129 1.539 | 8.8

(e) Amazon Music (NOAH ranks first overall)

(f) Yelp Restaurant (NOAH ranks second overall)

\ T2 T3 T4 HE HOHE NHS \A.R. \ T2 T3 T4 HE HOHE NHS \A.R.
HYPERCL 1332 1392 1.064 1343 | 7.0 HYPERCL 1,257 3,450 5,793 4.89 30.86 33
HYPERPA 139.9 1.090 1.391 1.283 | 6.8 HYPERPA 9427 2622 66.76 203 | 9.0
HYPERFF 1294 0.635 1.430 | 4.8 HYPERFF 9,204 2571 66.74 20.89
HYPERLAP 137.0 1345 0978 1325 | 5.2 HYPERLAP 30.63 8.99
hyper dK-series 1342 1572 1.102 1.230 | 6.0 hyper dK-series 6.86 10.27
THERA 1333 1.124 1.061 1.221 THERA 9,136 259 65.53 2052
HyCoSBM 1289 161.3 1.053 6 HyCoSBM 7,027 53.83 2543
HYREC 111.3 1.343 1.225 | 5.0 HYREC 2,394 6,736 8,943 2331 59.88 15.96
NOAH 145.2 1.598 OG8N NOAH 1,714 5,182 8,038 12.81 37
NOAH-CF 61.7 1139 0.827 2955 1.630 | 7.2 NoOAH-CF 2,158 6,330 9,199 30.05 7731 1422 | 75
(g) Yelp Bar (NOAH ranks first overall) (h) Devops (NOAH ranks fourth overall)
| T2 T3 T4 HE HOHE NHS | A.R. | T2 T3 T4 HE HOHE NHS | AR.
HYPERCL 6,586 64.30 105.59 -- HYPERCL 6.9 57 5.0 6.6 53
HYPERPA 13,538 27,184 31,883 268.45 466.07 233.28 HYPERPA 7.8 8.6 74 7.7 8.0
HYPERFF 26,032 29,718 262.36 440.24 230.16 6.2 HYPERFF 52 6.3 6.2 5.1 54
HYPERLAP 61.98 104.40 HYPERLAP 53 53 53 6.2
hyper dK-series 15,041 23,320 hyper dK-series 6.1 4.7 43 54
THERA 26,900 30,711 266.45 464.98 232.26| 7.8 THERA 4.0 5.8 5.2
HYyCoSBM 13,984 18,112 265.48 230.81| 3.3 HyCoSBM 4.8 6.4 6.0
HYREC 14,769 26,521 29,705 263.42 442.54 228.55| 7.0 HYREC 7.1 5.6 5.1
NoAH 7,292 17,557 22,532 65.32 109.78 134.08| 4.5 NOoAH 4.4
NOAH-CF 14,298 27,920 31,497 268.81 468.97 236.31| 9.7 NOAH-CF 7.0 7.2 6.3 6.8 8.4 7.9 9.0

(i) Patents (NOAH ranks fifth overall)

(j) Average Rank over Nine Datasets (NOAH ranks first overall)
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) and those generated by NOAH tuned by NOAHFIT (red). These results demonstrate that, despite

its focus on structure—attribute interplay, NOAH also successfully reproduces purely structural patterns.

E. Scalability Analysis

We evaluate the scalability of our fitting algorithm, NOAH-
FIT, and our generative model, NOAH, with respect to the
number of hyperedges and attributes. To this end, we scale up
the Contact-Workspace dataset by factors ranging from 2 to
512. Figure 5 shows the runtime of fitting and generation as
functions of the number of hyperedges and attributes, plotted
on a log—log scale. The proposed fitting algorithm, NOAHFIT,
scales nearly linearly with the number of hyperedges and
remains almost constant with respect to the number of at-
tributes. The proposed generative model, NOAH, scales near-
linearly with both the number of hyperedges and the number
of attributes. These results demonstrate the scalability of both
the fitting and generation components of our framework.

F. Further Analysis

Additionally, we examine the structural patterns of hyper-
graphs generated by NOAH in terms of (1) node degrees,
(2) hyperedge sizes, and (3) singular values. These properties
are known to follow heavy-tailed distributions in real-world
hypergraphs [19]. In Figure 4, we visually demonstrate that
NOAH with NOAHFIT reproduces such structural patterns,
which closely resemble those of the input hypergraphs. We
also present a detailed evaluation on structural metrics in
Appendix XI [35], where we show that, despite its focus
on structure—attribute interplay, NOAH achieves competitive
results on purely structural patterns (with an average rank of
4.6, when compared with 8 structure-focused methods).

VII. CONCLUSIONS

In this work, we proposed NOAH, a stochastic generative
model for attributed hypergraphs that reproduces realistic
interplay between structure and node attributes. By leveraging
a two-level node hierarchy, core and fringe nodes, NOAH
formulates hyperedge generation as sequential attachment of
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g 103 ‘f‘.‘slope =1 qE, 100 ‘e“‘slope =1
] LA = A
S 02 "‘“ S0 0"‘“
3107 g% 3107 %.
. .
103 10* 10° 108 103 10° 10° 108
# hyperedges # hyperedges

(a) NOAHFIT (fitting) w.r.t. number
of hyperedge

(b) NOAH (generation) w.r.t.
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103 102
‘;: :‘ 100 slope =0.92 g
$ 102 slope = 0.01 3 [ Tels
L7 e—0=0-0-0-0-0-0-0-0 - ot
g c‘E’ 10° ,"' * " slope =1
- 1 _ = beRe
€ 10 slope =0 = 101 "“'.
2 2 .

.
100 .
10t 10?2 103 10t 102 103
# attributes # attributes

(c) NOAHFIT (fitting) w.r.t. number
of attributes

(d) NOAH (generation) w.r.t.
number of attributes

Fig. 5. NOAHFIT scales nearly linearly with the number of hyperedges
and remains almost constant with respect to the number of attributes. NOAH
scales nearly linearly with both the number of hyperedges and attributes.

nodes (first cores, then fringes), where attachment probabil-
ities are governed by node attributes. We also introduced
NOAHFIT, a parameter estimation algorithm that fits NOAH
to a given hypergraph by estimating affinity matrices and
seed core probabilities. Through extensive experiments on
nine real-world hypergraphs across four diverse domains, we
demonstrated that NOAH with NOAHFIT more accurately
reproduces the structure—attribute interplay than eight existing
hypergraph generative models across six metrics.

Relevance to Data Mining and Broad Impact. The pro-
posed framework aligns with the fundamental goal of data
mining: finding models that explain complex, large-scale data.
By generating realistic data, it supports diverse applications in
domains where hypergraphs naturally arise, enabling statistical
analysis, simulation, and data anonymization.




Future Directions. We plan to extend our model and fitting

algorithm to handle more complex attributes, including con-
tinuous ones. We also aim to further enhance their scalability
to support even larger, web-scale hypergraphs.
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